
Group Collaboration for Mars Rover Mission
Operations

Paul G. Backes, Kam S. Tso, Jeffrey S. Norris, Robert Steinke

Abstract— Group collaboration capabilities have been developed
for Internet-based Mars rover mission operations. Internet-based op-
erations enables scientists to participate in daily Mars rover mission
operations from their home institutions. Group collaboration enables
geographically separated users to collaboratively analyze downlinked
data and plan new activities for the rover. The motivation for group
collaboration in Mars rover mission operations and the technologies
developed to provide group collaboration are discussed. The group
collaboration capability was developed for use in rover mission oper-
ations in the 2003 NASA Mars Exploration Rover mission.

Keywords—Rover, planning, group, collaboration, Internet.

I. INTRODUCTION

N
ASA’S Mars Exploration Rover (MER) mission will
land two rovers at different locations on Mars early

in 2004. The rovers will be equipped with various science
instruments to perform scientific analysis of the Martian
terrain. Instruments will be on a mast as well as on a five
degree of freedom manipulator arm. During each rover’s
three month primary mission, they will traverse a total of
about 1 Km while exploring various locations in detail.

Command sequences will be sent to the rovers from
Earth once a day and the rovers will send downlink data to
Earth once a day. The mission operations system that will
be used to generate the daily command sequences will be
primarily located at JPL. In addition, an Internet-based sci-
ence operations system will enable some scientists to par-
ticipate in daily science activity plan generation from their
home institutions.

Internet-based operations reduces mission costs by en-
abling scientists to remain at their home institutions while
participating in the mission. Transportation, housing, and
facilities costs are all reduced by enabling remote partic-
ipation. Also, distributed operations enables participation
by some scientists who would not be able to move to the
JPL area during the mission.

There are various challenges to utilizing Internet-based
operations for Mars rover missions. An architecture must
be provided that enables numerous clients to participate si-
multaneously from various remote locations. Data needs to
be quickly transmitted each day to the participating scien-
tists. Group collaboration capabilities are needed to enable
the various participants to work together efficiently while

P. Backes, J. Norris, and R. Steinke are with the Jet Propulsion Labo-
ratory, California Institute of Technology, Pasadena, California. E-mail:
Paul.G.Backes@jpl.nasa.gov

K. Tso is with IA Tech Inc., Los Angeles, California. E-mail: tso@ia-
tech.com

being geographically separated.
The Web Interface for Telescience (WITS) was devel-

oped to provide Internet-based distributed operations for
Mars lander and rover missions. WITS was originally
used as the ground operations system for the Rocky7 re-
search rover for sequence generation [1]. An adaptation of
WITS was used for Robotic Arm and Robotic Arm Camera
command sequence generation for the Mars Polar Lander
(MPL) mission which was to begin surface operations in
December 1999 [2]. Unfortunately, communication with
the MPL lander on the Martian surface was not achieved,
so commanding the lander was not possible.

WITS is currently used for visualization and command
sequence generation for the Field Integrated Design and
Operations (FIDO) rover. The FIDO rover is a prototype
rover equipped with instrumentation designed to simulate
the Athena Payload for the MER mission [3], [4]. Stereo
cameras on the rover’s mast and body are used to image
the surrounding terrain. An instrument arm places a micro-
scopic imager on selected surface targets. An infrared point
spectrometer on the mast is used to characterize the terrain.
The group collaboration capability described in this paper
was integrated into WITS and demonstrated for FIDO rover
operations. Examples used in this paper are from FIDO
rover operations.

An adaptation of WITS will be used for science planning
for the MER mission. Scientists at the primary JPL oper-
ations center will collaborate with Internet-based scientists
to generate the daily science activity plan.

Before the development of the group collaboration tech-
nologies described in this paper, WITS provided distributed
but not collaborative participation by geographically dis-
tributed users. Downlink data was sent to remote users
who could view the data, select targets, and submit sub-
sequences to the common server. When users wanted to
discuss data with colleagues, it was quite difficult to com-
municate to other remote users which images to view, and
what features in the images were of interest. With increas-
ing numbers of distributed users, it became very confusing
when trying to communicate. Also, when a new user joined
in middle of a planning session, it was difficult to get that
person oriented to the current planning state.

From that distributed operations experience, the group
collaboration features that were needed to make distributed
collaboration efficient were identified. It was necessary to
know what images and data products other users were look-



Fig. 1. FIDO Distributed Operations Architecture

ing at. It was necessary to easily be able to point out a spe-
cific terrain location in an image and have all other users
see that location immediately annotated. It was needed to
be able to get the attention of another user after a period
of inactivity by the group. It was needed to have separate
groups of people working together on specific topics. It
was needed to be able to send messages to other users. The
identified necessary group collaboration features were de-
signed, developed, and integrated into WITS.

II. DISTRIBUTED ROVER OPERATIONS

The distributed operations architecture for FIDO rover
field test operations is shown in Figure 1. There is one
WITS server and many WITS clients which communicate
via the server.

The process for generation of one uplink sequence be-
gins with the downlink of data from the rover. This data is
automatically processed and placed in the primary database
using the Parallel Telemetry Processor (PTeP) [5]. The
Multi-mission Encrypted Communication System (MECS)
system distributes the new data products to the remote
users. MECS was developed to provide data distribution
with the necessary Internet security [6], [7].

Once users have the updated downlink data, they can
view the data using the visualization views of WITS. Dis-
tributed users have the same visualization and sequence
editing capabilities as users at the primary operations cen-
ter. A screendump of various windows and views of WITS
is shown in Figure 2. The Panorama view is a mosaic
of images taken by the stereo cameras on the rover mast.
The Overhead view shows the area around the rover from
above. Various image types are provided with the Over-
head view including color-coded elevation maps (shown in
the figure) and texture maps. The 3D view shows the 3D
rover and terrain. A Wedge view shows one image from a
stereo camera in full size and resolution. Users can view
the downlink data by themselves or collaboratively.

After viewing the downlink data, the users decide what
the rover should do in the next sequence. They might do
this by themselves initially, but then they join a collabo-
rative planning meeting where 3D science targets are se-

lected and the sequence is developed. The group features
described below are used in the collaborative sequence de-
velopment.

Science targets are 3D terrain locations that can be used
as parameters in commands. They are shown in the views
as pink circles with the name of the targets next to them.
Any participating user can create a science target. An ex-
ample use for a science target is as a location to point the
mast-mounted spectrometer at. Target IPS-1 is used for this
purpose in the example sequence. Rover waypoints are 3D
terrain locations that the rover will traverse to. Waypoints
are shown in the views as blue squares. Targets and way-
points entered by distributed users can be loaded, viewed,
and used by all users.

The Sequence window is used to edit a command se-
quence. The Sequence window is a tabbed pane in the
WITS Main window as shown in Figure 2. Available com-
mands are shown in the left column and can be inserted into
the sequence on the right. Various editing, simulation, and
sequence verification features are provided. Users can cre-
ate a new sequence and submit it to the server, edit an exist-
ing sequence, or collaboratively edit one sequence. Activi-
ties are visualized in the views when possible. In Figure 2,
outlines of images in a panorama command on the cliff are
shown and nine spots around the IPS-1 target are shown for
the IPS scan activity.

The Resources window, shown in Figure 3, shows the
resources that the rover would use if the sequence was ex-
ecuted. The activities are shown along the bottom and the
resource plots above them. Users edit the sequence to en-
sure that the resources are within allocations.

III. GROUPS

Group collaboration capabilities were added to make
collaboration with distant colleagues more efficient. Group
collaboration features are provided to the user via the
Group tabbed pane of the WITS Main window, as shown
in Figure 4. A user can work independently viewing data
products and editing sequences. When the user wants to
work with other users to collaborate in viewing data prod-
ucts then the user joins a group.

There are two types of groups: permanent groups and
temporary groups. Permanent groups are provided that
have defined purposes and cannot be deleted. For example,
in Figure 4 the sowg group represents the permanent Sci-
ence Operations Working Group which includes all mission
scientists. Temporary groups can be created and deleted by
users.

The Group window “Group” menu is used for creating
new groups, deleting groups, joining a group, and leaving
a group. A group is created by selecting the “New” menu
item. The user gives the group a name and then the new
group is available to all users to join. A group is deleted
by selecting the “Delete” menu item, and then selecting the



Fi
g.

2.
W

IT
S

Se
qu

en
ce

W
in

do
w

an
d

Pa
no

ra
m

a,
O

ve
rh

ea
d,

3D
,a

nd
W

ed
ge

V
ie

w
s.



Fig. 3. Resources Window

group name. A group cannot be deleted if it is a permanent
group or if there are any current users in the group.

A user joins a group by selecting “Join” in the Group
window “Group” menu and then selecting the available
group name. A user leaves the group they are currently
in by selecting the “Leave” menu item.

All users who are currently using WITS are listed in the
left column of the Group window, as shown in Figure 4.
The group that a user is in is shown in square brackets to
the right of the user name, if the user has joined a group.

IV. GROUP VIEWS

To ensure that all group members are viewing the same
information, the group view feature was implemented. A
view is turned into a group view by selecting the “Add To
Group” item in the File menu of the Panorama, Overhead,
Wedge, and 3D views. When a view becomes a group view,
it is opened in all group members’ clients and the word
Group is added to its title.

The “View” menu of the Group window provides menu
items for management of the group views. The “Refresh
Group Views” menu item opens all views of the user’s
current group that are not opened, for example if the user
closed one or more group views for some reason but now
wants to make sure all group views are open. The “Close
Non-Group Views” menu item closes all views except
those in the current group. The “Close Other-Group Views”
menu item closes all group views that are not in the current
group. This is useful for when a user changes groups and

wants to close the views from the previous group. By de-
sign, the views of the previous group are not automatically
closed when a user leaves a group or joins a new group.
In the above menu items, Close means to close the group
view, but leave it as an item in the group state on the server.
The “Delete All Group Views” menu item deletes all views
of the current group from all group members’ clients. This
is only done by the group administrator. Delete means that
the view is deleted from the group state on the server as
well as closed as a view on the clients.

V. GROUP MARKERS

The Group window “Marker” menu is used to manage
group markers. A marker is a 3D location selected by a
group user and displayed on all other group users’ client
views. Examples are shown in Figure 2. To create a marker,
a user first selects a pixel in an image in a Panorama or
Wedge view. The 3D coordinates are then displayed. This
location is converted to a marker by selecting “Add” in the
“Marker” menu. A green triangle is drawn at the location
in all Panorama, Wedge, and Overhead views of all group
members and the name of the user who created the target is
displayed next to the marker.

The “Delete” menu item of the “Marker” menu deletes
the user’s marker in all group member clients’ views. The
“Delete All” menu item deletes all markers from all users
in all group member clients’ views. The “Show” checkbox
menu item allows the user to turn on and off display of
group markers.

VI. GROUP MESSAGES

Group messages are used for textual communication be-
tween group members. It is assumed that during collabo-
ration, telephone-based teleconferencing or Internet tele-
phony are used for verbal communication. All received
group messages are displayed in the Messages area of the
Group window. To send a group message, a user types the
message in the “Inputs” area of the Group window and then
selects the “Send” button. Who the message is sent to and
how it is sent are controlled by the selection in the menu
below the Send button. If “Personal” is selected, then the
message will only be sent to the user that has been selected
in the users list in the left column of the Group window.
The selected user does not have to be in the group that the
current user is in. If “Group” is selected, then the mes-
sage will be sent to all members of the current group. If
“Announcement” is selected, then the message will be dis-
played in a pop-up window in all group members’ clients.
The “Send Beep” checkbox of the Group window indicates
whether the user wants a beep to be sounded on all group
members’ clients when their message is received.



Fig. 4. Group Window

VII. GROUP STATE AND INITIALIZATION

The server maintains a state for each group. The state
includes information on all current client users, all current
markers, cumulative group messages, and current group
views. When a user joins a group, their client is auto-
matically initialized with the group state, i.e., all the group
views are automatically opened, all the markers are dis-
played, and the group messages are displayed. The group
state is also useful for on-going group users. If a group
user deletes one of more group views for some reason, then
they can automatically reopen them by selecting “Refresh
Group Views” in the View menu of the Group window, as
discussed above. This is possible due to the server main-
taining the group state.

VIII. COLLABORATIVE SEQUENCE EDITING

Collaborative sequence editing enables users to simul-
taneously edit a common sequence. This reduces the se-
quence generation time by having different parts of the se-
quence developed in parallel.

The basic hierarchy of a sequence is sequence, request,
activity, command. Any number of requests can be in a
sequence, any number of activities can be in a request, and
any number of commands can be in an activity. Resource
allocations and time constraints are specified at the request
level. Resource allocations include time duration, energy,
and data volume. Time constraints specify specific times
when tasks must begin or end by.

For collaborative sequence editing, ownership of the se-
quence is specified at the sequence and request levels. The
owner of a sequence can modify the structure of the se-
quence including adding and deleting requests and speci-
fying owners for each request. The sequence owner cannot
modify the activities inside a request that is owned by a dif-
ferent user (although the sequence owner can delete a com-
plete request). The owner of a request can add, delete, and
modify the activities inside the request, but cannot modify
the constraints and resource allocations for the request.

To collaboratively edit a sequence, a user first checks out
the sequence. The sequence is copied from the common



server to the user’s WITS client. The user then modifies
the sequence as appropriate for their ownership. Updating
the common server sequence with the user changes is called
merging.

To merge a sequence owner’s changes to the common
sequence at the server, the sequence owner user selects a
menu item to modify the sequence structure. The origi-
nal server sequence is copied and given a version number.
Then the structure changes are made to the sequence. All
requests in the modified sequence are used in the new se-
quence. For all requests that were in the original sequence,
the activities are copied from the original sequence and
placed in the new sequence.

A request owner merges changes to the common server
by selecting a menu item to merge their changes to the com-
mon server. The original server sequence is copied and
given a version number. Then the requests in the original
sequence that the current user is owner of are updated with
the activities in the modified sequence.

IX. IMPLEMENTATION

WITS implements a client/server architecture to support
group communications and other mission planning and op-
erations activities. The WITS server is implemented as a
Java application running on a computer at JPL. The WITS
client is downloaded from the JPL WITS website and run
as a Java application.

RMI (Remote Method Invocation) is used for client/server
communications since WITS is developed in a pure Java
environment and RMI provides a number of advantages.
RMI can pass full objects as arguments and return values,
not just predefined data types. This means that complex
types, such as a standard Java hashtable object, can be
passed as a single argument. RMI provides secure chan-
nels between client and server by using the secure socket
factory. RMI provides a means for clients running behind a
firewall to communicate with remote servers via tunneling
messages through HTTP POST calls.

The WITS server implements a group server RMI ob-
ject to provide group collaboration services to the clients.
When the user of the WITS client logs in, the client ob-
tains the reference of the group server object from the RMI
registry running at the WITS server site. The client then
invokes the userLogin method with the username and
password arguments for login validation. At the same time,
the WITS client passes its group client object to the server.
This enables the server to send messages to the client using
a technique commonly known as server-to-client callback.

Group collaboration in WITS uses both synchronous and
asynchronous remote method calls. Synchronous calls can
provide immediate results to the clients. For example, in
the userLogin call, the user can know if a wrong pass-
word has been entered. However, synchronous calls can
hang the client for an indefinite length of time if the server

or network is overloaded. Thus, to improve both user ex-
perience and system performance, we implement most re-
mote method calls to be asynchronous so that the client and
server are loosely coupled. With asynchronous communi-
cation, the server can schedule its processing group collab-
oration requests more efficiently because it does not have
to reply to each call immediately. For the client, it can con-
tinue to handle other tasks such as screen update and user
input after it submits a group collaboration request.

The group server maintains a queue of pending group
collaboration requests submitted by the clients. The re-
quests are processed in the first-come-first-serve basis. As
multiple clients can concurrently submit asynchronous re-
quests and make synchronous remote method calls, atten-
tion must be paid to ensure that group state data, such as
the list of users, will be updated atomically and without
causing deadlock. The Java language provides the synchro-
nized primitive that automatically guarantees that two or
more threads will not be updating the object or executing
the method that has been declared as synchronized. We
make use of this feature to implement the serialization of
updating the group state data.

The states of group collaboration are always maintained
at the Group Server. They include the lists of users and
groups, group messages, markers, and views. When a user
joins a group, the client will be updated with the current
state of the newly joined group. This ensures the client
to have the same group views, group markers, and discus-
sions among group members. The group messages are also
logged to a file for creating a record of the discussions.

Another function of the group server is to detect termi-
nated clients that have not properly logged out. It sends
periodic probe messages to each client which will cause
the remote method call to fail if the client no longer exists.
When all the clients are logged out, the group server cleans
up the states and closes the group message log file.

WITS utilizes APIs (application programming inter-
faces) provided by the Java 2 platform. The Swing graph-
ical user interface components, such as tabbed pane, split
pane, tree view, etc., are used to implement the user control
and viewing functions. Java 2D is used to manipulate im-
ages and draw 2D objects, while Java 3D is used to render
solid models and Mars terrain.

X. FUTURE PLANS

The goal of future work is to make distributed collab-
oration even more convenient. The planned environment
requires support for two fundamentally different kinds of
communication. First, remote users must have access to
data products. Second, groups of users must be able to col-
laborate. In the first case, availability is a large concern.
The communication system should be resilient to lost mes-
sages and periods of disconnection. The user should be
able to cache copies of data products locally and continue



to work in disconnected mode. To provide availability and
disconnected operation, an appropriate technology is a gos-
sip protocol [8], [9], [10].

The second case is concerned with synchronous collab-
oration where users are present at the same time, but per-
haps not at the same location. A primary concern for syn-
chronous collaboration is the creation of shared context,
e.g., if all collaborators are viewing the same data prod-
uct they can refer to features in that data product more eas-
ily. Disconnected operation is not a concern for this type
of communication because disconnection completely elim-
inates the possibility of synchronous collaboration. To pro-
vide shared context in a connected environment an appro-
priate technology is a group multicast protocol [10], [11],
[12]. In the future we plan to support both modes of com-
munication, and explore interactions that occur when col-
laborators have both methods available.

A gossip protocol functions in the following manner.
The nominal state of this system is a disconnected state.
Occasionally, two sites connect and exchange information
about which messages each has received. Then each site
forwards any messages not yet received by the other. A
downlinked data product would be placed in the gossip log
and eventually reach all sites. If the data product itself is
too big a message announcing its availability can be sent.
The system doesn’t have to worry about detecting and re-
pairing broken communication links or resending messages
because disconnection and resending are part of the nomi-
nal operation of gossip.

A group multicast protocol provides efficient delivery
of messages to a set of destinations. An application can
choose whether messages are delivered in a reliable or un-
reliable manner. In addition, ordering conditions can be
enforced on messages such as total order, causal order, or
FIFO order. A group collaborator may take an action such
as opening a new data product or making annotations, and
that action should be visible to all other group members.
To achieve this, the action is described in a message that
is delivered by a group multicast protocol enforcing reli-
ability and total ordering. This way, every member of the
group sees the same set of actions in the same order so their
shared context remains consistent.

XI. CONCLUSIONS

Daily participation in Mars rover mission operations by
geographically distributed scientist users via the Internet
will greatly benefit Mars missions both in cost savings
and increased participation by scientific experts. The new
group collaboration features described in this paper enable
geographically distributed users to collaborate effectively
in planning daily rover mission activities.

ACKNOWLEDGMENTS

The work described in this paper was funded by the
TMOD Technology Program, the Mars Exploration Tech-
nology Program, and the SBIR Program, and performed at
the Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration.

REFERENCES

[1] S. Hayati, R. Volpe, P. Backes, J. Balaram, R. Welch, R. Ivlev,
G. Tharp, S. Peters, T. Ohm, and R. Petras, “The Rocky7 rover:
A Mars sciencecraft prototype,” in Proceedings IEEE International
Conference on Robotics and Automation, Albuquerque, New Mex-
ico, April 1997, pp. 2458–2464.

[2] Paul G. Backes, Kam S. Tso, Jeffrey S. Norris, Gregory K. Tharp,
Jeffrey T. Slostad, Robert G. Bonitz, and Khaled S. Ali, “Internet-
based operations for the mars polar lander mission,” in Proceedings
IEEE International Conference on Robotics and Automation, San
Francisco, California, April 2000, pp. 2025–2032.

[3] R. Arvidson, Paul Backes, E. Baumgartner, D. Blaney, L. Dorsky,
A. Haldemann, R. Lindemann, P. Schenker, and S. Squyers, “Fido:
Field-test rover for 2003 and 2005 mars sample return missions,”
in 30th Lunar and Planetary Science Conference, Houston, Texas,
March 15–19 1999.

[4] P.S. Schenker, E.T. Baumgartner, L.I. Dorsky, P.G. Backes, H. Ag-
hazarian, J.S. Norris, T.L. Huntsberger, Y. Cheng, A. Trebi-Ollennu,
M.S. Garrett, B.A. Kennedy, and A.J. Ganino, “Fido: a field in-
tegrated design & operations rover for mars surface exploration,”
in Proceedings 6th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (i-SAIRAS-’01), Montreal,
Canada, June 18-21 2001.

[5] Jeffrey S. Norris, Paul G. Backes, and Eric T. Baumgartner, “PTeP:
The parallel telemetry processor,” in Proceedings IEEE Aerospace
Conference, Big Sky, Montana, March 2001.

[6] Jeffrey S. Norris and Paul G. Backes, “Wedds: The WITS encrypted
data delivery system,” in Proceedings IEEE Aerospace Conference,
Big Sky, Montana, March 2000.

[7] Robert Steinke, Paul G. Backes, and Jeffrey S. Norris, “Distributed
mission operations with the multi-mission encrypted communica-
tion system,” in Proceedings IEEE Aerospace Conference, Big Sky,
Montana, March 9-16 2002.

[8] M.J. Lin, K. Marzullo, and S. Masini, “Gossip versus determinis-
tically constrained flooding on small networks,” in Proceedings of
the 14th International Conference on Distributed Computing (DISC
2000) a.k.a Lecture Notes in Computer Science, 2000, vol. 1914, pp.
253–267.

[9] G. Fertin, “Hierarchical broadcast and gossip networks,” Informa-
tion Processing Letters, vol. 73, no. 3-4, pp. 131–136, February 29
2000.

[10] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A survey of
gossiping and broadcasting in communication networks,” Networks,
vol. 18, no. 4, pp. 319–349, Winter 1988.

[11] Y. Amir, C. Danilov, and J. Stanton, “A low latency loss tolerant
architecture and protocol for wide area group communication,” in
Proceedings of the International Conference on Dependable Sys-
tems and Networks, 2000, pp. 327–336.

[12] I. Rhee, S.Y. Cheung, P.W. Hutto, A.T. Krantz, and V.S. Sunderam,
“Group communication support for distributed collaboration sys-
tems,” Cluster Computing, vol. 2, no. 1, pp. 3–16, 1999.


